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Initial stresses in the middle plane enter into the differential equation for plate stability 
and the corresponding Bryan auergy criterion. 

In the ganeral case these stressas sre determined from the aolution of the plane problem. 
For a plate subjected to complex contour loadings, concentrated forcesit for example, the 
solution of this problem is very complicated. 

At the same time, the buckling energy criterion allows a representation in which only 
the work of the given external forces enters, in addition to the potential energy of plate ben- 
ding. Hence, the natural question arises as to whether it is generally necessary to know the 
diatribotion of the true initial stresses in solving stability problems. It is shown herein 
that critical values of the extaraal loadings may be found without determining the initial 
state of stress of the plate. 

A new form of the hsckling energy criterion is obtained in which the initial stresses do 
not enter. It is shown that in determining the additional taageatial displacements in which 
the exteraal loadings do work ia plate bucklin 
otilize conditions of inextensibility of the mid ! 

it is impossible, in the general case, to 
le plane. 

The proposed method of determining the critical loadings without a preliminary solution 
of the plane problem is illustrated by examples. The known Sommafeld problem of stability 
of a rectangular plate compressed by concentrated forces is considered. 

I. Let a, w, w be the components of the total displacement vector of points of the mid- 
dle plane of the plate in a rectangular x, y, s coordinate system, The x and y axes lie in 
the plane of the plate. The strains in the middle plane of the plate are 

&4 1 aws -- 
ex=7E+ 2 ax ’ ( ) 

(1.11 

We consider the stresses in the middle plane to satisfy the equilibrium Eqe. 

&g=*, a% %+--Cl ax -- 0.21 

and therefore 
a% 

=y=&W* 
3% 

x=-w 
(1.31 

The atresaca on the plate contour are connected with the loadinga X and Y by means of 
the dependences 

730 
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o,l+mb= x, up f ri = Y (I = 008&, m = 6ina) 0.4) 
Here a-is the angle formed by the external normal to the contoar of the plate and the 

z-axis. On the contour correspondingly 
I 

$= Xds, 
s 

W 8 ay=- Yds 
s 

(1.5) 

0 0 

Booke’s law for the stresses and strains in the middle plapls is 

6 =+(i3~--~~), 'Ly=+(~~-~~), r= '(';@) f‘ 
x (1.6) 

where E and p are the elastic modulus aad Poisson’s ratio of the plate materisl. 
At the time preceding buckling let 

tU= 0, v = vg, u = Us, cp = %, 8, = e,,... (1.7) 
After buckling let 

tJ = Vo + xtr r-& = a0 + r+, cP=‘Pe+q%, a,=-e,+a,1,... (l.8) 
The stress fanctioa 90 satisfies the bibarmonic Eq. v2v2qp, = 0. The stress function 

qI satisfies the known Karman Eq. 

(1.9) 

The linearized equilibrium Eq. of a curved element of the-plate in normal projections is 
SW 

Lwvw = h (c&S + Quo qjF + 2ro gg) 
where t5 is the plate thickness. 

The kaown Bryan energy criterion [l and 21 f or 
is 

absolute equilibrium during plate buckling 

Y+~~~[“~(~)2+“;o(~)a+z~o~~]d,dy=o (i.11) 

where V is the potential energy of plate bending 

The stresses u 
elasticity tboory. 

o, bpo,~o should be determined from the solation of the plane problem of 
tet us use the notation 

(1.13) 

2. 
the 

The de.rivatives of the transverse deflection w in (1.13) may be expressed in terms of 
additional displacements ut, ut and the additional stresses crXl, u,.t, it . It follows 

from (1.1) and (1.6) that 
1 aw2 -- 

( ) 2 dz = %l 

au1 1 au1 =~v~-qj-=-$~v,l-ps,&l)-- ay 

On the basis of (2.1) and the dependencea 

(2.1) 

for the fnitial state of stress. (1.13) may be transformed to 

(2.3) 
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Utilizing the Green’s formula of integration by parts, we obtain 

u = h [ UiQ + uoaylm + ulJz1m + YOTiZ] lis - h 

k *o 
aa,, ar, 

-+x dxdy 
ay )I - h [uIs,& + vq,,,m + UITOI~L + u~r,,l] ds + 

+h&&$+~)+v~(~+~)]dxdy 
(2.4) 

By virtue of conditions (1.2), which are satisfied for both the initial and the tangential 
stresses, the double integrals vanish. The factors in the displacements uc, v and a 
in the integrands of the contour integrals transform to contour loadings actor 2 G)! ing to 
Therefore, the energy criterion for indifferent equilibrium during buckling may be written as 

l’ + h ]uoXi -t *oYll ds - h [ ~1x0 + viY,,] ds = 0 (2.5) 

are initial contour loadings and displacements, X,, Y, and at, 
oadings and the corresponding displacements. 

the plate contour (first boundary value problem), the 
are equal to zero, and the buckling energy criterion (2.5) 

becomes 

[ uiX,, + viYo] ds =_O (2.6) 

If the displacements I+,, u 
lem), then the additional disp P 

are given on the plate contour (second boundary value prob- 

of condition (2.6) 
acements ut , u1 vanish on the contour and we obtain in place 

II 
V + h 

9 
[uoXl+ n,,Yl] ds = 0 (2.7) 

For the first problem the boundary conditions X, = Y, = 0 may also be written thus 

wl w x=ay=O or qJ1= g- = () 

Eq. (2.6) may be considered as the buckling energy criterion in the form of Timoshenko. 

3. Instead of the+actuyl initial stresses uxo, 
missible stresses (I,~, u 

ova, 7. let us introduce the statically ad- 
Q+. They satisfy the equilibrium Eqs. (1.2) and the boundary 

conditions (1.4, but car& satisfy the equation of compatibility of the strains V%, + or) 
= 0. For any system of statically admissible stresses, we may write the identity 

$ ]atXo + utyo] da = 1s [$ Qxu+ +-$ct,,,+ -t (% + 2) rO+] dx dy (3.1) 

Therefore, the Timoshenko’s energy criterion (2.6) may be written as 

V-h 
au1 av, 
TjpXO++.Ql 

++(%j-~‘)~~+]dxdy=O (3.2) 

Utilizing (2.1) to eliminate the derivatives of the displacements u1 and o1 we obtain 

‘Ihe last integral at the left-hand side of (3.3) vanishes. This is easily proved by repla- 

cing uxl, 0 t, 
b 

7t by their expressions in terms of derivatives of the Airy function qt and 
lnte rating psts. The contour integral drops out by virtue of the boundary conditions 
(2.4, and th * t e tn egral over the area drops oat by virtue of the equilibrium Eqs. (1.2) for the 
stresses US,+, Uue+, T,+. 

Therefore, the aiergy Eq. (2.6) may be given the form 
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h 
-- 

E ss (ati+ + f&+1 b&1+ QvJ fix dY = 0 (3.41 

If the statically admiaaible stresses coincide with the trsa stresses, then 

jl to,,, + ouo) (ox1 + out) dx & = $1 V%)oVs%dx dy = ss ( VrV+po) tpldx dy = 0 (3.51 

and (3.41 transformsinto the original Eq, (1.111. Eq. (3.41 is a new energy criterion for 
stability, expressed in terms of the statically admissible stresses o~“,u,(;‘, xs+. Upon 
using this criterion it is not required to solve the plane problem of elasticity theory to de- 
termine the initisl stresses osu, CYo 7 . The unknown function ‘p1 should be determined 
from the solution of the Kanuan Eq. (1.8) under th b e oundary conditions (2.8) for a given 
function of the Wmsverae deflection w. 

The necessity of solving the nonlinear Eq. (I.91 seems, at first glance, to be peculiar 
In order to clarify the singularities of the obtained problem, let us consider the equations 
for u i and v 1. From (1.11 and (1.6) we have: 

av1 I “?E.\2 ! 1 a'% a291 __ 
ay=--2- ay j + ff ax2 ---gjF ( 1 

From a consideration of (3.6) and.(I.Qf it follows that the second members on tlte right- 
hand sides of these Eqa, defined by the additional Airy function are of the same order of 
smallness as the first members which src expressed in terms of squares aud products of 
the derivatives of the trsnsverae deflection of the plate. 

In a number of works on plate stability, starting with the early works of Timoahenko, the 
displacements u 
inextensibility o t 

and vJ on the plate contour were found from the so-called conditions of 
the mzddle plane of the plate 

au1 1 aw ‘= ( 1 
Lb1 1 aw a 

i ) au, au, 
ay + ax 

aw aw 
f3X =--a ax -- , -=_. _ 

aY L aY ) 
--__w- 

a~ ay (3.71 

However, the system of Eqa. (3.71 will be compatible if and only if 

aa, 2 

( ) 

SW SW 

ax ay -z-=0 (3.81 

i.e., when the right-hand aide of (1.91 vanishes and-q1 dr, yf = 0. But condition (3.81 is 
satisfied only for bending of the plate along a developable surface, for example, in the cyl- 
indrical bending case. Formal determination of the displacements s (x, yl or vt (x, yl on the 
plate contour by integrating one of the first two Eqs. of the system 3.7) is not legitimate t 
if (3.8) is not satisfied. 

It is interesting to note that the Bryan Eq. (l.lIl can be obtained from the energy condi- 
tion (2.61 by form&y ntilidng (3.71. This equation was obtained precisely thus by Timo- 
shenko. However, in the general case it is impossible to obtain correct values of the dis- 
placements u t(x, yl and vi&, y) from (3.71. Let us also note en interesting property of the 
true stresses usV uro, To, which differentiates them from the statically admissible stres- 
ses us$, a,+, 7,‘. By subtracting (2.61 from (1.11) we obtain 

Replacing the cOntour integral by au area integral and taking account of (1.111, we ob- 
tain 

(3.91 

The relationship (3.91 may be considered as au original orthogonality condition for the 
true initial stresses snd the additional strains, occurring at the time of buckling, of the mid- 
dle plane of the plate. 

Condition (3.91 is not satisfied for erbitrsry statically admissible initial stresses. The 
orthogonality condition (3.9) may also be written as 
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ss v%‘oc72cp, dx dy = 0 (3.10) 

Letting (p,,+ denote the Airy function for statically admissible initial stresses, we ob- 

rain from (3.4) 

V'$,+V"cpldx dy = 0 (3.11) 

Eq. (1.9) and the boundary conditions (2.8) should lead to this equation. 

The scheme for solving the problem of determining the critical values of external loa- 
dings applied to a plate contour in its plane is the following. For given external loadings 
on the plate contour the simplest statically admissible system of stresses uxu+, Us,,+, r,,+is 
determined. The transverse deflection of the plate is given as the linear aggregate 

u = Zf,u& (x3 Y) (3.12) 

as is done in solving problems by the Ritz method. 
The right-hand side of (1.9) is evaluated, and it is solved either exactly or approximately 

for homogeneous boundary conditions (2.8) on the contour. The solution of this auxiliary 
problem is analogous to the solution of the problem of transverse bending of a plate clamp- 
ed along the contour. Having determined ‘pl (I, y) and pvp1(z, y) the last member of the 
left-hand side of (3.11) can be evaluated and the ordinary procedure of the Ritz-Timoshenko 
method may then be applied to determine the critical values of the parameters governing 
the external contour loadings Xu, Yo . Th e original Eq. (2.6) of the Timoshenko method may 
be considered in place of (3.11). But the displacements u1 and u1 on the plate contour 
should be determined by means of integrating the correct Eqs. (3.6), and not from the erro- 
neous Eqs. (3.7). 

Therefore, utilization of the Timoshenko energy method in the form of (2.6) does not re- 
quire preliminary determination of the actual stress field in the plate prior to buckling, hut 
its correct application requires solution of the Karman Eq. (1.9) and the determination of 
the tangential displacements taking account of the additional stresses uXlr uylr rl occur- 

ring during plate buckling. 
In many cases, particularly for a plate subjected to concentrated forces, the solution of 

(1.9) under the simple boundary conditions (2.8) is much simpler than the solution of the 
biharmonic Eq. v 

‘y13 

‘p =O under complex boundary conditions. 
The energy Eq. 2.6 may be considered as a corollary of the energy conservation law in 

the bifurcation of the plate equilibrium mode. But an apparent contradiction arises in such 
an analysis of this equation and the results obtained in this paper. It follows from (2.6) that _ _ 

a b 

Fig. 1 

all the work of the external forces on the ad- 
ditional displacements transforms into bending 
potential energy during plate buckling. And it 
follows from (3.6) that it is necessary to take 
account of the additional stresses in the mid- 
dle plane of the plate. This contradiction is 
easily explained if it is noted that the potcn- 
tial energy of these additional stresses will be 
a higher order quantity. But these stresses 
must be taken into account in the determination 
of the tangential displacements of points of 
the middle plane. 

4. As au illustration of applying the gen- 
eral dependences, let us consider the problem of stability of a freely supported square plate 
compressed by concentrated forces (Fig. la). The boundary conditions for w(x, y) are: 

w = 0, awa24 = 0 for 2 = 0, z = a; 

W = 0, Pwlay~ = 0 for y = 1 y=a (4.1) 
The boundary conditions (2.8) are valid for the function ‘p1 (I, y) . 
Let us give approximate expressions for w and ‘pl in the form 
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Integrating (1.91 b 
I obtain V = r?flD12a. 

the Gelerkin method, we find ct = - ft2E/4. According to (1.121 we 
By virtue of the symmetry of the problem only half the plate for x < 

4 o/2 may henceforth be considered. The statically admissible stresses are selected us fol- 
lowe: 

P 
u#@+=-~ for (c-+)<x<fC++) 

(4.31 %O +=to for Ogx<s/Z, (c+e/Z)<x<a/Z 

Q* +=o , 4 + =o (I?-, 0) 
Then taking into accoont thst 

,,,=c,(~~(cos~-2,,~,,, %+cos+j 
we obtain from (3.71 

na flW ITWP, 2nc Ilrf?P, 2nc 
x-y-1 -sin ----COS--0 

4a & 16~ 4 
where P+ is the critical force. Hence 

Paa 1 
F*=zm=1---1,~cos2nc,a 

In particular, we obtain g I 2/3 snd’i;, = 2, respectively, for c = a/2 and c = 0. 
Using (3.61, we obtain on the plate contour 

;1 
sail 1 2nx 

=---1-2,cOS~ nV,‘J - for y=O 

(4.41 

(4.51 

(4.61 

(4.71 

and we again arrive at (4.6) frort the condition (2.61, 
The problem of stability of a rectangular plate loaded b 

ly 
concentrated forces has sn in- 

teresting history. It was first considered by Sommsrfeld (3 in 1906; then Timoshsnko Cl], 
Filippov[4], Lur’e [5] and others solved it in several different variants and for different 
boundery 9pnditions. All these authors obtained the value p, = 0.478, substantially below 
the value P* = Z/3= 0.667 given by (4.61, for a square hinge supported plate compressed by 
two concentrated forces (for c = o/2 in the problem considered above). 

Most recently, several new works have appeared where this same problem has been sol- 
ved by utilizing computers. The field of initial real stresses has been determined numerical- 
ly in the_e works, and then-the etabilit 
ticnlar, P+ = 0.650 [61 end I’ s = 0.675 7 rip 

roblem has also been solved numerically. In par 

plate (with c =-o/2) by such a method. 
have been obtained for a square hinge supported 

The value P+ = 0.478, obtained previously, is explained by the fact that the statically 
admissible field of initial stresses (4.3) was used in place of the real field of initial stres- 
ses, and the determination of the critical loadings was actually carried out by Formula (3.11) 
but without taking account of the last integral. 

If we try to solve the problem considered above by using the condition of inextensibility 
of the middle plane, and to determine ut(z, y) from just the second Eq. of the system (3.71, 
we then obtain in place of (4.7) and (4.6) 

For c = a/2 we_ obtain p, = 0.5 , and for c + 0 we arrive at the abiurd resnlt F, + 00. This 
very same result P* + 00 is also obtained in solving the problem by (3.11) if the last integral 
in it is not taken into account. 

An analogous example (Fig. Ibl. when the condition of inextensibility of the middle plsne 
leads to infinite critical loadings, wes presented in [S]. But the authors of [8] mode the erro- 
neous deduction from this clever example that it is necessary to determine the true initial 
stresses in the plate to solve this problem. Usin 
and (4.51 obtained earlier, it is easy to find that &I_ 

the approximate dependence8 (4.21, (4.3) 
+ - l/2 without determining the initial 

stresses. 
Let us note that the obtained results are easily extended to the problem of stability and 

oscillations of plates loaded by mass forces, and in particular, to the problem of the natural 
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oscillations of a rotating disc stretched by centrifugal forces. 
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