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Initial stresses in the middle plane enter into the differential equation for plate stability
and the corresponding Bryan energy criterion.

In the general case these stresses are determined from the solution of the plane problem.
For a plate subjected to complex contour loadings, concentrated forces, for example, the
solation of this problem is very complicated.

At the same time, the buckling energy criterion allows a representation in which only
the work of the given external forces enters, in addition to the potential energy of plate ben~
ding, Hence, the natural question arises as to whether it is generally necessary to know the
distribution of the true initial stresses in solving stability problems. It is shown herein
that critical values of the external loadings may be found without determining the initial
state of stress of the plate.

A new form of the buckling energy criterion is obtained in which the initial stresses do
not enter. It is shown that in determining the additional tangential displacements in which
the external loadings do work in plate buckling, it is impossible, in the general case, to
utilize conditions of inextensibility of the midgle plane.

The proposed method of determining the critical loadings without a preliminary solution
of the plane problem is illustrated by examples. The known Somm erfeld problem of stability
of a rectangular plate compressed by concentrated forces is considered.

1. Let u, v, w be the components of the total displacement vector of points of the mid-
dle plane of the plate in arectangular x, ¥,  coordinate system. The x and ¥ axes lie in
the plane of the plate. The strains in the middle plane of the plate are

du 1 fow\? v 1 (dw\2 du dv w dw
°x='a‘;+7(_a;)' 8u=5;+“§'(w)' =%t ta oy M
We consider the stresses in the middle plane to satisfy the equilibrium Egs.
ds ot ds T

— g O —

oz + ay =0, dy + 3z =0 1.2)
and therefore

- i) 1.3
=@’ =@’ = oy (1.3

The stresses on the plate contour are connected with the loadings X and Y by means of
the dependences
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Opl + Tm = X, oym+xl=Y (Il =cosa, m=sina) (1.4
Here @ is the angle formed by the external normal to the contour of the plate and the

x-axis, On the contour correspondingly
8 8

%:Sxm, %}=—§ns (1.5

Hooke's law for the stresses and strains in the middle plane is

1 . i 2(1 4+
=g e =g 1= g
where E and p are the elastic modulus and Poisson's ratio of the plate material.
At the time preceding buckling let
w =0, v=v) Um==1Uy P =0 Bx = Exy... (1.7)
After buckling let
v=vt o, u=utu, Q=0+ @, & ==Ety 1 ey,.. (1.8)

The stress function ¢, satisfies the biharmonic Eq. V2V2¢, = 0. The stress function
¢, satisfies the known Kaman Eq.

ViV = E [('5%%)2 — % -g;;)_] {1.9)

The linearized equilibrium Egq. of a curved element of the plate in normal projections is
0w Mw ?w Eh3
szvzw =h (Gm‘m‘ + Gyo ‘6‘3}5‘ -+ 21 —d;:)_y_) (D = m) (1.10)
where ) is the plate thickness.
The known Bryan energy criterion [1 and 2 for absolute equilibrium during plate buckling
is

h Jw\? dw \2 ow dw .
V+—2_5 ["xo(a_x) +GW(W) + 210 ’a‘:'c""a—y‘]dxdy=0 (1.11)
where V is the potential energy of plate bending
D CC (/0w 8w \? ot \*  w Fw ]
V=7 W& +5) r2a-w|(a) - ee

The stresses 0,4, 0,,:7y should be determined from the solution of the plane problem of
elasticity theory. Let us use the notation

0ol 2] 4o (2 420 2% way, aan

2. The derivatives of the transverse deflection w in {1.13) may be expressed in terms of
the additional displacements u,, v, and the additional stresses o, ,, Oy Ty « It follows
from {1.1) and (1.6) that

1 ( w )2 duy 1 duy

2\0z) T3z = F Cu—HBoy)— 5
1/ dw\2 v,y 1 vy (2.1)
2 (73?) =syl"—5§—='§(%1""f""x1)_w

@_ dw duy 6v1 ’ 2 (1 -+ P,) 6u1 avl
oz dy *Tl_(w+3§«)—'TTI“<W+ oz )
On the basis of (2.1) and the dependences

_L duy 1 dvg 2 +p)- dug  Bvy ,_
FCo—Mp) =T T W=7 —f =g+ (22

for the initial state of stress, (1.13) may be tranaformed to

‘T Bug dve Buy By duy
0 =m [ 5 oat o+ (57 + ) ufaray—n [ G+

6211 aul oy
+ 3y SwF (";,;* + —aa,—l) To] dz dy (2.3)
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Utilizing the Green’s formula of integration by parts, we obtain

asxl Ity
U= h@ [lk)lel + vocvlm -+ ugTaim + UoT]l] ds — h% [uo (T -+ Ty") -l-—
ac at
+ v ( 0;1 +—ax—l):| dexdy—h (S) [wis, ol + 010,y + UrTont + v1toll ds +
96,4 ) 9s at,
+hSX[“‘( 9z T %y >+ ”1( 3y axo")] dz dy (2.4

By virtue of conditions (1.2), which are satisfied for both the initial and the tangential
stresses, the double integrals vanish. The factors in the displacements ugy, vy and u,, v,
in the integrands of the contour integrals transform to contour loadings accon?ing to h.4).
Therefore, the energy criterion for indifferent equilibrium during buckling may be written as

V+h§[uoX1 + voyllds—h§[ulxo + 1Yol ds =0 (2.5)

Here X, Y, and ug, v, are initial contour loadings and displacements, X,, ¥, and u,,
v, are additional contour loadings and the corresponding displacements.,

1f the forces X, Yo are givenon the plate contour (first boundary value problem), the
additional contour forces X,, Y, are equal to zero, and the buckling energy criterion (2.5)
becomes

V—h @ [41Xo + 21Yo]ds =0 (2.6)

If the displacements u,, v, are given on the plate contour (second boundary value prob-
lem), then the additional displacements u,, v, vanish on the contour and we obtain in place
of condition (2.6)

|4 + h& [uoX1 + on1] ds =10 (2.7)

For the first problem the boundary conditions X, = ¥; = 0 may also be written thus
I ¢ 991 (2.8)

—_— o —— — or q)I:‘_—‘an _‘_0
Eq. (2.6) may be considered as the buckling energy criterion in the form of Timoshenko.

3. Instead of the actual initial stresses 04, 00, 7o let us introduce the statically ad-
missible stresses 0:0’ 0, To'- They satisfy the equilibrium Egs. (1.2) and the boundary
conditions (1.4), but cannot satisfy the equation of compatibility of the strains V2(o, + o)
= 0. For any system of statically admissible stresses, we may write the identity

du dv du v
§ [taiXe + 010} ds = SS [‘5;1- Sy0" + a—ylcvﬂ+ -+ (731_/1- + El‘) ‘to+] dx dy (3.1)

Therefore, the Timoshenko’s energy criterion (2.6) may be written as

C[ du an, duy vy
V_"SS[T;%*JFT; Sy + (W + %) To*] drdy =0 (3.2)
Utilizing (2.1) to eliminate the derivatives of the displacements u; and v, we obtain
L\ ow \2 Jw \? dw ow
4 +_2—SS [°m+ (W) +GU0+ (T?y_) +2To+ g?y—“ dx dy_. (3.3)

kAN + + : h(1+p’) \ + Py + + —0
~——L;.—5 (5xp" + 940 )(cxl—{—cyl)dzdy +——F (6xp"Syy — 2T T1 0,4 S,p)dzdy=

The last integral on the left-hand side of (3.3) vanishes. This is easily proved by repla-
cing Oep Oy Ty by their expressions in terms of derivatives of the Airy function ¢, and
integrating by parts. The contour integral drops out by virtue of the boundary conditions
(2.8), and the integral over the area drops out by virtue of the equilibrium Egs. (1.2) for the
stresses Oxyt, Ouet, T,'.

Therefore, the energy Eq. (2.6) may be given the form

h \ + aw 2 + aw)z 2 +a_ui_a_“i
V+ 5 S[Gm (a—z) + 6y (a—y + 2%" 57 ay]drdy—
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h
~F SS (Ox0" 1 030") By + 1) dedy =20 (3.4)

If the statically admissible stresses coincide with the true stresses, then

SS (Oxp -+ Oy) (04 +-0y) dx dy = SS Vo rde dy = SS (V2V2qo) Qrdr dy = 0 (3.5)

and (3.4) transforms into the original Eq. (1.11). Eq. (3.4) is a new energy criterion for
stability, expressed in terms of the statically admissible stresses 0,%,0.4%, To*. Upon
using this criterion it is not required 1o solve the plane problem of elasticity theory to de-
termine the initial stresses 0,4, 0, 7 + The unknown function @1 should be determined
from the solution of the Kaman Egq. (1.8) under the boundary conditions (2.8) for a given
function of the transverse deflection w.

The necessity of solving the nonlinear Eq. (1.9) seems, at first glan ce, to be peculiar
In order to clarify the singularities of the obtained problem, let us consider the equations
foruy and vy, From (1.1) and (1.6) we have:

duy 1 ( o )2 1 (<92cpl 22

9z — 2 \ 9=z E ayz“"aﬁ)

8o, 1 jowy 1 (ol By

=7 (w) rE (G ) .6)
duy v dw ow  2(14p)

dy + 9 =" = By E dx dy

From a consideration of {3.6) and (1.9} it follows that the second members on the right-
hand sides of these Eqs., defined by the additional Airy function are of the same order of
smallness as the first members which are expressed in terms of squares and products of
the derivatives of the transverse deflection of the plate.

In a number of works on plate stability, starting with the early works of Timoshenko, the
displacements u; and v, on the plate contour were found from the so-called conditions of
inextensibility o} the middle plane of the plate

duy 1 /ow\? v, 1 [ dw\? duy  dv; ow dw
==l ==l Gt a=—ray @
However, the system of Egs. (3.7} will be compatible if and only if
Fw \* S w
(3277) — a3 = (3.8)

i.e., when the right-hand side of (1.9) vanishes and @, (x, y)} = 0. But condition (3.8) is
satisfied only for bending of the plate along a developable surface, for example, in the cyl-
indrical bending case. Formal detemination of the displacements u,{(x, y) or v, (x, y) on the
plate contour by integrating one of the first two Eqs. of the system t3.7) is not legitimate
if (3.8) is not satisfied.

It is interesting to note that the Bryan Eq. (1.11) can be obtained from the energy condi-
tion (2.6) by formally utilizing (3.7). This equation was obtained precisely thus by Timo-
shenko. However, in the general case it is impossible to obtain correct values of the dis-
placements u,(x, y) and v,(x, y) from (3.7). Let us also note an interesting property of the
true stresses g,q O,q, T, Which differentiates them from the statically admissible stres-
8es Oyt Oyot, Tyt . By subtracting (2.6) from (1.11) we obtain

Yy (aw 2 dw \? dw dw
) [ (52 )+ (57) +2f°3;-aﬂdxdy+ [ Xo + vi¥olds =0

Replacing the contour integral by an area integral and taking account of (1.11), we ob-
tain

SS (Sx08x1 + OBy + ToTa)dedy =0 (3.9)

The relationship (3.9) may be considered as an original orthogonality condition for the
true initial stresses and the additional strains, occurring at the time of buckling, of the mid-
dle plane of the plate.

Condition (3.9) is not satisfied for arbitrary statically admissible initial stresses. The
orthogonality condition (3.9) may also be written as
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SS V9oV 1drdy =0 (3.10)

Letting @,* denote the Airy function for statically admissible initial stresses, we ob-
rain from (3.4)

h (¢ dw\2 Jw \2 ow Jw
V+ ‘2_85 [Gxo* (W) +°uo*(w) + Zfo*wa‘] dzdy —
h »
_‘FSS Vigo* Vigdz dy =0 (3.11)

Eq. (1.9) and the boundary conditions (2.8) should lead to this equation.

The scheme for solving the problem of determining the critical values of extemal loa-
dings applied to a plate contour in its plane is the following. For given extemal loadings
on the plate contour the simplest statically admissible system of stresses 6x™, 0yy*, Ta*is
determined. The transverse deflection of the plate is given as the linear aggregate

w==Xf,w, (z, y) (3.12)
as is done in solving problems by the Ritz method.

The right-hand side of (1.9) is evaluated, and it is solved either exactly or approximately
for homogeneous boundary conditions (2.8) on the contour. The solution of this auxiliary
problem is analogous to the solution of the problem of transverse bending of a plate clamp-
ed along the contour. Having determined @, (z, y) and V2 @y(z, y)the last member of the
left-hand side of (3.11) can be evaluated and the ordinary procedure of the Ritz-Timoshenko
method may then be applied to determine the critical values of the parameters governing
the external contour loadings X,, Y, . The original Eq. (2.6) of the Timoshenko method may
be considered in place of (3.11). But the displacements u; and v, on the plate contour
should be determined by means of integrating the correct Eqs. (3.6), and not from the erro-
neous Eqs. (3.7).

Therefore, utilization of the Timoshenko energy method in the form of (2.6) does not re-
quire preliminary determination of the actual stress field in the plate prior to buckling, but
its correct application requires solution of the Karman Eq. (1.9) and the determination of
the tangential displacements taking account of the additional stresses 0y, 0, T; occur-
ring during plate buckling.

In many cases, particularly for a plate subjected to concentrated forces, the solution of
(1.9) under the simple boundary conditions (2.8) is much simpler than the solution of the
biharmonic Eq. \72\/%(p,=0 under complex boundary conditions.

The energy Eq. 2.63 may be considered as a corollary of the energy conservation law in
the bifurcation of the plate equilibrium mode. But an apparent contradiction arises in such
an analysis of this equation and the results obtained in this paper. It follows from (2.6) that

c 1P P, p P all the work of the external forces on the ad-
7 7 z P ) l# ditional displacements transforms into bending
1 =T potential energy during plate buckling, And it
at r a follows from (3.6) that it is necessary to take
P a account of the additional stresses in the mid-
+' +H -] T - e dle plane of the plate. This contradiction is
Co | easily explained if it is noted that the poten-
| J I I { P tial energy of these additional stresses will be
MR z ' a higher order quantity. But these stresses
y '7 t—z— 4 P must be taken into account in the determination
of the tangential displacements of points of
a b the middle plane.
Fig. 1 4. As an illustration of applying the gen-

eral dependences, let us consider the problem of stability of a freely supported square plate
compressed by concentrated forces (Fig. la). The boundary conditions for w(x, y) are:
w=0' *w/dzx® =0 for x=0,z=a;
w=0, woy=0 for y=) y=a (4.1)
The boundary conditions (2.8) are valid for the function @, (z, y).
Let us give approximate expressions for w and ¢, in the form
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g e T T R I
w = f1 sin ~——sin __a_y_ y @y == ¢; sin? Tsm’—ay—— (4.2

Integrating (1.9) by the Galerkin method, we find ¢, = — fi 2E /4, According to (1.12) we
obtain ¥ = i f,D/2a% By virtue of the symmetry of the problem only half the plate for x £
&£ a/2 may henceforth be considered. The statically admissible stresses are selected as fol-
lows:

P
Gw‘fm_?h? for (c—-—%-)<x<(c+—;—)
St =0 for 0CzCe/2, (c+e/2)Tr<al2 (4.3)

" =0, Tt=0 (e-0)
Then taking into account that

2 2n 2nx 25 21ty
V”¢1=Cl(~—:-) (cos « — 2cos ——cos —g—-—{—cos-*;y-) {4.9)
we obtain from (3.7)
4 12D =n%,2P 2ne ndf2p 2xe
o L e s 20— T con =0 4.5
where P, is the critical force. Hence
— Pya i
Pe= 308D = 1=} cos e/ 2 (4.6)
In particular, we obtain Ps = 2/3 and P« = 2, respectively, forc=a/2 and ¢ = 0.
Using (3.6), we obtain on the plate contour
- 2
2y = 8”; :1—-—é—cos ™ for y=0 (4.7

nefy a
and we again arrive at (4.6) from the condition (2.6).
The problem of stability of a rectangular plate loaded by concentrated forces has an in-

teresting history. It was first considered by Sommerfeld [3] in 1906; then Timoshenko [1],
Filippov[4]. Lur’e [5] and others solved it in several different variants and for different
boundary conditions. All these authors obtained the value B, = 0.478, substantially below
the value , = 2/3=0.667 given by (4.6), for a square hinge supported plate compressed by
two concentrated forces {for ¢ = 6/2 in the problem considered above).

Most recently, several new works have appeared where this same problem has been sol-
ved by utilizing computers. The field of initial real stresses has been determined numerical-
ly in these works, and then the stability problem has also been solved numerically. In par-
ticular, Py = 0.650[6] and P, = 0.675 [y'I]Phave been obtained for a square hinge supported
plate (with ¢ = a/2) by such a method.

The value #» = 0.478, obtained previously, is explained by the fact that the statically
admissible field of initial stresses (4,3) was used in place of the real field of initial stres-
ses, and the determination of the critical loadings was actually carried out by Formula (3.11)
but without taking account of the last integral.

If we try to solve the problem considered above by using the condition of inextensibility
of the middle plane, and to determine v,(x, y) from just the second Eq. of the system (3.7),
we then obtain in place of (4.7) and (4.6)

- 2nz - 1
m=A—cosm. Pe={ o IneTa (4.8

For ¢ = a/2 we_obtain B, = 0.5, and for c » 0 we arrive at the absurd resalt P, - o, This
very same result £y - o0 is also obtained in solving the problem by (3.11) if the last integral
in it is not taken into account.

An analogous example (Fig. 15}, when the condition of inextensibility of the middle plane
leads to infinite critical loadings, was presented in [8]. But the authors of [8] made the erro-
neous deduction from this clever example that it is necessary to determine the true initial
stresses in the plate to solve this problem. Using the approximate dependences (4.2), (4.3)
and (4.5) obtained earlier, it is easy to find that Po = 1/2 without determining the initial
stresses.

Let us note that the obtained results are easily extended to the problem of stability and
oscillations of plates loaded by mass forces, and in particular, to the problem of the natural
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oscillations of a rotating disc stretched by centrifugal forces.
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